Video-Server > Vorlesungen > Ingenieurmathematik I

Ingenieurmathematik I

von PD Dr. Johannes Brasche

Semester: Wintersemester 2010/2011

Vorlesungskennung: W 0110

38:06 Std37.479 Aufrufe27.10.2010
Kamera Anja Michaela Kaiser

Hinweise zum Player

Um die Videos auf dieser Webseite wiedergeben zu können, muss Javascript aktiviert sein. Der Internet Explorer wird erst ab Version 11 unterstützt. Zur Wiedergabe mit dem Internet Explorer 11 in Windows 7 und älter wird die aktuelle Version des Adobe Flash Players benötigt.



Vorlesungen


Das Federpendel

Vorlesung Nr. 1

01:13 Std25.10.20109.979 Aufrufe

Vorlesung starten

Inhalt:
1. Das Federpendel
- Das Modell
- Herleitung der Pendelgleichung

1.2 Hilfsmittel
- Die Exponentialfunktion
- Ableitungsregeln

1.3 Lösung der Pendelgleichung und Anfangswertprobleme
- Lösungen der Pendelgleichung
- Ein Beispiel

Das Federpendel und Komplexe Zahlen

Vorlesung Nr. 2

01:28 Std26.10.20103.087 Aufrufe

Vorlesung starten

Inhalt:
1.3 Lösungen der Pendelgleichung
- Aus Lösungen konstruiert man weitere Lösungen
- Das Anfangswertproblem
- Ein Beispiel zur starken Dämpfung
- Ein Beispiel zur schwachen Dämpfung

2. Komplexe Zahlen
- Einige nützliche Eigenschaften

Komplexe Zahlen

Vorlesung Nr. 3

01:28 Std01.11.20103.273 Aufrufe

Vorlesung starten

Inhalt:
2. Komplexe Zahlen
- Einige nützliche Eigenschaften
- Gaußsche Zahlenebene und Grundbegriffe
- Kosinus und Sinus
- Addtionstheoreme und komplexe Schreibweise
- Polarform einer komplexen Zahl
- Quadratische Gleichungen

Komplexe Zahlen

Vorlesung Nr. 4

01:26 Std02.11.20101.629 Aufrufe

Vorlesung starten

Inhalt:
2. Komplexe Zahlen
- Wiederholung Pendelgleichung
- Komplexe Lösungen der Pendelgleichung
- Von komplexen zu reellen Lösungen
- Ein Beispiel zur schwachen Dämpfung

Komplexe Zahlen

Vorlesung Nr. 5

01:30 Std08.11.20101.219 Aufrufe

Vorlesung starten

Inhalt:
2. Komplexe Zahlen
- Wiederholung: Komplexe Lösungen der Pendelgleichung
- Ein Beispiel für ein Anfangswertproblem
- Ein anderer Lösungsweg zum Beispiel
- Zusammenfassung zur Pendelgleichung

Folgen und Reihen

Vorlesung Nr. 6

01:31 Std09.11.20102.648 Aufrufe

Vorlesung starten

Inhalt:
3. Folgen und Reihen

3.1 Motivation
- Das Anfangswertproblem y'=y, y(0) = 1
- Potenzreihenansatz

3.2 Vollständige Induktion und Rekursion
- Notation
- Ein Problem zur Illsutration
- Satz über die vollständige Induktion
- Lösung des Problems

Folgen und Reihen

Vorlesung Nr. 7

01:29 Std15.11.20101.358 Aufrufe

Vorlesung starten

Inhalt:
3.2 Vollständige Induktion und Rekursion
- Geometrische Summenformel
- Bernoullische Ungleichung
- Beispiel für eine Rekursionsformel, Fakultäten
- Koeffizienten der e-Funktion
- Ausblick: Approximation der e-Funktion

Folgen und Reihen

Vorlesung Nr. 8

01:29 Std16.11.20101.363 Aufrufe

Vorlesung starten

Inhalt:
3.3 Grenzwerte
- Folgen
- Divergenz gegen unendlich
- Beispiele und das Archimedische Axiom
- Definition des Grenzwerts
- Grenzwertsätze

Folgen und Reihen

Vorlesung Nr. 9

01:27 Std22.11.2010916 Aufrufe

Vorlesung starten

Inhalt:
3.3 Grenzwerte
- Wiederholung
- weitere Grenzwertsätze
- Summen, Produkte und Quotienten von Folgen
- Beispiele
- Partialsummenfolgen (Reihen)
- Die geometrische Reihe
- Grenzwert von Brüchen

Folgen und Reihen

Vorlesung Nr. 10

01:27 Std23.11.2010919 Aufrufe

Vorlesung starten

Inhalt:
3.3 Folgen und Reihen
-Grenzwertsätze: monotone Folgen, Ungleichungen
- Quotientenkriterium
- Beispiel zum Quotientenkriterium
- Abschätzung von e
- Alternierende Reihen
- Beispiel zu alternierenden Reihen

Stetigkeit

Vorlesung Nr. 11

01:24 Std29.11.20101.103 Aufrufe

Vorlesung starten

Inhalt:
4. Stetigkeit
- Motivation
- Intervallhalbierungsverfahren
- Motivation des Stetigkeitsbegriff, Definition ''stetig''
- Zwischenwertsatz
- Summen, Produkte, Quotienten stetiger Funktionen

Stetigkeit und Differenzieren

Vorlesung Nr. 12

01:31 Std30.11.20101.053 Aufrufe

Vorlesung starten

Inhalt:
4. Stetigkeit

- Stetigkeit verketteter Funktionen
- Urbild offener Intervalle
- Extrema

5. Differenzieren

- 5.1 Einleitung
- 5.2 Geraden
- 5.3 Definitionen, Grundbegriffe, Beispiele

Differenzieren

Vorlesung Nr. 13

01:25 Std06.12.20101.013 Aufrufe

Vorlesung starten

Inhalt:
5. Differenzieren 5.3 Definitionen, Grundbegriffe, Beispiele

- Wiederholung
- Beispiele
- Summen- und Produktregel
- Ableitung von Polynomen
- Kettenregel
- Quotientenregel
- Beispiel zur Ketten- und Quotientenregel
- Tangens

Differenzieren

Vorlesung Nr. 14

01:21 Std07.12.2010559 Aufrufe

Vorlesung starten

Inhalt:
5. Differenzieren 5.3 Definitionen, Grundbegriffe, Beispiele

- Kettenregel
- injektiv, Umkehrfunktion
- Beispiele: Wurzelfunktion, e-Funktion
- Ableitung der Wurzelfunktion

Differenzieren

Vorlesung Nr. 15

01:30 Std13.12.2010504 Aufrufe

Vorlesung starten

Inhalt:
5.4 Anschauliche Bedeutung der Ableitung

5.5 Die Umkehrfunktion

- f(x+), f(x-)
- Wertebereich monotoner Funktionen
- Ableitung der Umkehrfunktion
- Tangens
- Arcustangens

Differenzieren

Vorlesung Nr. 16

01:31 Std03.01.2011490 Aufrufe

Vorlesung starten

Inhalt:
5. Differenzieren 5.7 Die Exponentialfunktion

- lokale Extrema
-Mittelwertsatz
- Monotoniebereiche
- konvex (linksgekrümmt)

Differenzieren

Vorlesung Nr. 17

01:26 Std04.01.2011477 Aufrufe

Vorlesung starten

Inhalt:
5. Differenzieren 5.7 Die Exponentialfunktion

- Natürlicher Logarithmus
- Allgemeine Potenzen
- Ableitung von ax
- Logartihmus zur Basis a
- Rechenregeln für Potenzen und Logarithmen
- ex als Grenzwert bei Verzinsung

Differenzialgleichungen

Vorlesung Nr. 18

01:29 Std10.01.20111.146 Aufrufe

Vorlesung starten

Inhalt:
6. Differenzialgleichungen 6.1 Stammfunktionen

- Einige Beispiele
- Partielle Integration
- Elementare Transformationen, Linearität
- Substitutionsregel
- Das bestimmte Integral

Differenzialgleichungen

Vorlesung Nr. 19

01:29 Std11.01.2011566 Aufrufe

Vorlesung starten

Inhalt:
6. Differenzialgleichungen 6.1. Stammfunktionen

- Beispiele für bestimmte Integrale, Flächeninhalt des Kreises
- 6.2 y' + f y = g
- Beispiel

Differenzialgleichungen

Vorlesung Nr. 20

01:27 Std17.01.2011514 Aufrufe

Vorlesung starten

Inhalt:
6. Differenzialgleichungen 6.2 y' +f y = g

- Anleitung zur Lösung von y' + f y = g
- Ein Anfangswertproblem mit vielen Lösungen
- 6.3 Eindeutigkeit der Lösung bei der Pendelgleichung
- Additionstheoreme für Sinus und Kosinus

Differenzialgleichungen und Gleichmäßige Konvergenz

Vorlesung Nr. 21

01:27 Std18.01.2011464 Aufrufe

Vorlesung starten

Inhalt:
6. Differenzialgleichungen 6.4 Trennung der Variablen 7. Gleichmäßige Konvergenz

- Einführendes Beispiel 1
- Beispiel 2: Explosion der Lösung
- Beispiel 3: AWP nicht eindeutig lösbar
- Definition der gleichmäßigen Konvergenz
- Stetigkeit der Grenzfunktion

Gleichmäßige Konvergenz

Vorlesung Nr. 22

01:28 Std24.01.2011399 Aufrufe

Vorlesung starten

Inhalt:
7. Gleichmäßige Konvergenz

- Wiederholung
- Differenzierbarkeit der Grenzfunktion
- e- Funktion
- Sinus und Kosinus
- Tabelle zu Konvergenzregeln
- Ableitung von Potenzreihen
- Beispiele
- Konvergenzradius

Gleichmäßige Konvergenz und Taylorformeln

Vorlesung Nr. 23

01:29 Std25.01.2011478 Aufrufe

Vorlesung starten

Inhalt:
7. Gleichmäßige Konvergenz 8. Taylorformeln

- Wiederholung
- Cauchy-Folgen
- Majorantenkriterium
- Quotientenkriterium
- Konvergenz von Stammfunktionen
- Äquivalenz der Definitionen von Sinus (Kosinus)
- Taylorformeln

Taylorformeln

Vorlesung Nr. 24

01:28 Std31.01.2011567 Aufrufe

Vorlesung starten

Inhalt:
8. Taylorformeln

- Bilder zur Taylorapproximation
- Taylorformeln
- l'Hospital
- Beweis der Taylorformeln
- Taylorpolynome und - Reihen
- Beispiel: ln(1+x)

Das Integral

Vorlesung Nr. 25

01:28 Std01.02.2011998 Aufrufe

Vorlesung starten

Inhalt:
9. Das Integral

- Ziele
- Approximation durch Polygonzüge
- Herleitung der Trapezsummenformel
- Integral und Flächeninhalt
- Fehlerabschätzung bei der Trapezsummenformel
- Beispiel

Das Integral

Vorlesung Nr. 26

01:31 Std07.02.2011754 Aufrufe

Vorlesung starten

Inhalt:
9. Das Integral

- Fortsetzung des Beispiels
- Beweis der Fehlerabschätzung bei der Trapezsummenformel
- Längen von Kurven


Impressum · Kontakt© TU Clausthal 2017